Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37744469

RESUMO

The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.

2.
Sci Data ; 9(1): 517, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002444

RESUMO

The Brain Imaging Data Structure (BIDS) established community consensus on the organization of data and metadata for several neuroimaging modalities. Traditionally, BIDS had a strong focus on functional magnetic resonance imaging (MRI) datasets and lacked guidance on how to store multimodal structural MRI datasets. Here, we present and describe the BIDS Extension Proposal 001 (BEP001), which adds a range of quantitative MRI (qMRI) applications to the BIDS. In general, the aim of qMRI is to characterize brain microstructure by quantifying the physical MR parameters of the tissue via computational, biophysical models. By proposing this new standard, we envision standardization of qMRI through multicenter dissemination of interoperable datasets. This way, BIDS can act as a catalyst of convergence between qMRI methods development and application-driven neuroimaging studies that can help develop quantitative biomarkers for neural tissue characterization. In conclusion, this BIDS extension offers a common ground for developers to exchange novel imaging data and tools, reducing the entrance barrier for qMRI in the field of neuroimaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Biomarcadores , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos
3.
Neuroimage ; 257: 119306, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595201

RESUMO

Replicability and reproducibility of scientific findings is paramount for sustainable progress in neuroscience. Preregistration of the hypotheses and methods of an empirical study before analysis, the sharing of primary research data, and compliance with data standards such as the Brain Imaging Data Structure (BIDS), are considered effective practices to secure progress and to substantiate quality of research. We investigated the current level of adoption of open science practices in neuroimaging and the difficulties that prevent researchers from using them. Email invitations to participate in the survey were sent to addresses received through a PubMed search of human functional magnetic resonance imaging studies that were published between 2010 and 2020. 283 persons completed the questionnaire. Although half of the participants were experienced with preregistration, the willingness to preregister studies in the future was modest. The majority of participants had experience with the sharing of primary neuroimaging data. Most of the participants were interested in implementing a standardized data structure such as BIDS in their labs. Based on demographic variables, we compared participants on seven subscales, which had been generated through factor analysis. Exploratory analyses found that experienced researchers at lower career level had higher fear of being transparent and researchers with residence in the EU had a higher need for data governance. Additionally, researchers at medical faculties as compared to other university faculties reported a more unsupportive supervisor with regards to open science practices and a higher need for data governance. The results suggest growing adoption of open science practices but also highlight a number of important impediments.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Neuroimagem Funcional , Humanos , Reprodutibilidade dos Testes , Inquéritos e Questionários
5.
Elife ; 102021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34658334

RESUMO

The sharing of research data is essential to ensure reproducibility and maximize the impact of public investments in scientific research. Here, we describe OpenNeuro, a BRAIN Initiative data archive that provides the ability to openly share data from a broad range of brain imaging data types following the FAIR principles for data sharing. We highlight the importance of the Brain Imaging Data Structure standard for enabling effective curation, sharing, and reuse of data. The archive presently shares more than 600 datasets including data from more than 20,000 participants, comprising multiple species and measurement modalities and a broad range of phenotypes. The impact of the shared data is evident in a growing number of published reuses, currently totalling more than 150 publications. We conclude by describing plans for future development and integration with other ongoing open science efforts.


Assuntos
Encéfalo , Bases de Dados Factuais/estatística & dados numéricos , Disseminação de Informação , Neuroimagem , Neurociências/organização & administração , Humanos
6.
Neurobiol Aging ; 105: 241-251, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34126466

RESUMO

Vascular endothelial growth factor (VEGF) is a complex signaling protein that supports vascular and neuronal function. Alzheimer's disease (AD) -neuropathological hallmarks interfere with VEGF signaling and modify previously detected positive associations between cerebral spinal fluid (CSF) VEGF and cognition and hippocampal volume. However, it remains unknown 1) whether regional relationships between VEGF and glucose metabolism and cortical thinning exist, and 2) whether AD-neuropathological hallmarks (CSF Aß, t-tau, p-tau) also modify these relationships. We addressed this in 310 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants (92 cognitively normal, 149 mild cognitive impairment, 69 AD; 215 CSF Aß+, 95 CSF Aß-) with regional cortical thickness and cognition measurements and 158 participants with FDG-PET. In Aß + participants (CSF Aß42 ≤ 192 pg/mL), higher CSF VEGF levels were associated with greater FDG-PET signal in the inferior parietal, and middle and inferior temporal cortices. Abnormal CSF amyloid and tau levels strengthened the positive association between VEGF and regional FDG-PET indices. VEGF also had both direct associations with semantic memory, as well as indirect associations mediated by regional FDG-PET signal to cognition.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Cognição , Função Executiva , Fator A de Crescimento do Endotélio Vascular/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Córtex Cerebral/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Proteínas tau/líquido cefalorraquidiano
7.
Neuroimage ; 206: 116327, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682983

RESUMO

White matter hyperintensities (WMHs) are brain white matter lesions that are hyperintense on fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) scans. Larger WMH volumes have been associated with Alzheimer's disease (AD) and with cognitive decline. However, the relationship between WMH volumes and cross-sectional cognitive measures has been inconsistent. We hypothesize that this inconsistency may arise from 1) the presence of AD-specific neuropathology that may obscure any WMH effects on cognition, and 2) varying criteria for creating a WMH segmentation. Manual and automated programs are typically used to determine segmentation boundaries, but criteria for those boundaries can differ. It remains unclear whether WMH volumes are associated with cognitive deficits, and which segmentation criteria influence the relationships between WMH volumes and clinical outcomes. In a sample of 260 non-demented participants (ages 55-90, 141 males, 119 females) from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we compared the performance of five WMH segmentation methods, by relating the WMH volumes derived using each method to both clinical diagnosis and composite measures of executive function and memory. To separate WMH effects on cognition from effects related to AD-specific processes, we performed analyses separately in people with and without abnormal cerebrospinal fluid amyloid levels. WMH volume estimates that excluded more diffuse, lower-intensity lesions were more strongly correlated with clinical diagnosis and cognitive performance, and only in those without abnormal amyloid levels. These findings may inform best practices for WMH segmentation, and suggest that AD neuropathology may mask WMH effects on clinical diagnosis and cognition.


Assuntos
Cognição , Disfunção Cognitiva/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Substância Branca/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Substitutos Ósseos , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
8.
Comput Brain Behav ; 2(3-4): 229-232, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32440654

RESUMO

The Target Article by Lee et al. (2019) highlights the ways in which ongoing concerns about research reproducibility extend to model-based approaches in cognitive science. Whereas Lee et al. focus primarily on the importance of research practices to improve model robustness, we propose that the transparent sharing of model specifications, including their inputs and outputs, is also essential to improving the reproducibility of model-based analyses. We outline an ongoing effort (within the context of the Brain Imaging Data Structure community) to develop standards for the sharing of the structure of computational models and their outputs.

9.
Med Phys ; 42(7): 4033-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26133604

RESUMO

PURPOSE: To demonstrate that a "5DCT" technique which utilizes fast helical acquisition yields the same respiratory-gated images as a commercial technique for regular, mechanically produced breathing cycles. METHODS: Respiratory-gated images of an anesthetized, mechanically ventilated pig were generated using a Siemens low-pitch helical protocol and 5DCT for a range of breathing rates and amplitudes and with standard and low dose imaging protocols. 5DCT reconstructions were independently evaluated by measuring the distances between tissue positions predicted by a 5D motion model and those measured using deformable registration, as well by reconstructing the originally acquired scans. Discrepancies between the 5DCT and commercial reconstructions were measured using landmark correspondences. RESULTS: The mean distance between model predicted tissue positions and deformably registered tissue positions over the nine datasets was 0.65 ± 0.28 mm. Reconstructions of the original scans were on average accurate to 0.78 ± 0.57 mm. Mean landmark displacement between the commercial and 5DCT images was 1.76 ± 1.25 mm while the maximum lung tissue motion over the breathing cycle had a mean value of 27.2 ± 4.6 mm. An image composed of the average of 30 deformably registered images acquired with a low dose protocol had 6 HU image noise (single standard deviation) in the heart versus 31 HU for the commercial images. CONCLUSIONS: An end to end evaluation of the 5DCT technique was conducted through landmark based comparison to breathing gated images acquired with a commercial protocol under highly regular ventilation. The techniques were found to agree to within 2 mm for most respiratory phases and most points in the lung.


Assuntos
Técnicas de Imagem de Sincronização Respiratória/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Pulmão/diagnóstico por imagem , Masculino , Modelos Animais , Modelos Biológicos , Movimento (Física) , Doses de Radiação , Respiração , Técnicas de Imagem de Sincronização Respiratória/instrumentação , Suínos , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...